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Overview Low Power Design Lecture

● Introduction and Energy/Power Sources (1)

● Energy/Power Sources(2): Solar Energy Harvesting

● Battery Modeling – Part 1

● Battery Modeling – Part 2

● Hardware power optimization and estimation – Part 1

● Hardware power optimization and estimation – Part 2

● Hardware power optimization and estimation – Part 3

● Low Power Software and Compiler

● Thermal Management – Part 1

● Thermal Management – Part 2

● Aging Mechanisms in integrated circuits

● Lab Meeting
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Overview for today

● Recap: Module selection

● Peak Power

● Resource Sharing

● DFG restructuring

● Glitch power reduction

● Clock Gating
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Recap: Module Selection for Low Power
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Recap: Module Selection for Low Power

● Module Selection

– process of mapping operations from the CDFG to component templates of 
RTL library

–  optimize power by chosing most suitable component from template 
library

● Example: „+“-Operation

– implementation alternatives:

● Ripple-Carry Adder (slow, but more efficient in switched 
capacitance)

● Carry-Lookahead Adder (faster, but less efficient in switched 
capacitance)

● ...

● Similar tradeoffs exist for other operations
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Recap: Module Selection for Low Power (cont'd)

● Every op in CDFG initially mapped to fastest component due to performance constraint 

● Not necessary to map all ops to fastest component; better focus on critical path

● Exploit slack in off-critical path ops to select slower functional units that may have a 
better efficiency in switched capacitance. 

● Important to have a large module library with distinct switching capacity efficiencies and 
performance characteristics

● components might operate at different Vdd

(src:[Anand98])



ces.itec.kit.edu8Volker Wenzel

Peak Power
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Peak Power

● Example: two possible schedules of a given CDFG

– assumption: same power for each operation

– ASAP schedule results in high peak power

● Slack may be used to reduce peak power without 
sacrificing any performance

(src: [Anand98])
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Peak Power (cont'd)

t A=2×tADD+2×t MUL

(src:[Knight])

● Assumption: 1,2 and 0,3 may pair-wise share a module.
● Resulting delays t

A
,t

B

● Average power consumption for the two schedules

● Example: t
A
=1,300ns; t

B
=660ns, P

A
=28.6mW, P

B
=56.4mW

Note: average power improved considerably, but energy is approx. the same!

tB=2×tADD+ tMUL

PA=
2×PADD×t ADD+2×PMUL×tMUL

t A
PB=

2×PADD×t ADD+2×PMUL×tMUL
tB
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Peak Power (cont'd)

● Window is 60ns

● ‘C’ uses multicycling and no parallelism, has lowest peak power and is slowest

● ‘H’ is fastest, has highest peak power but comparable average power (according to the window)

● Note: optimizing for peak power or for average power are completely distinct tasks.
(src: [Knight])

Min Delay: refers to when the operations are actually
completed, whereas the other case always 
assumes a 60ns window.
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Resource Sharing
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Resource Sharing for Low Power

● Resource Sharing is

– Mapping OPs and variables in CDFG to FUs, registers, etc.

– Defining interconnection between them to form RTL implementation

– Mapping from function to structure

– Directly impacts power consumption by determining switching activity at various signals, 
buses, wires, macro blocks, etc.

● Observation:
– Result of resource sharing of variables' values are time multiplexed registers

– Values that appear as input operands of OPs are time-multiplexed to appear at inputs of 
FUs

– Values that are transferred between FUs are sequenced to appear on interconnect units 
(buses and multiplexers)

– Word-level temporal correlations of values on data path signals are determined by the 
correlations among variables and input operands of operations that are grouped together 
during resource sharing

– Word-level correlation determine bit-level switching activity
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Resource Sharing for Low Power (cont'd)
– Exploiting Signal Correlation –

● Focus on +1 and +2 operations

● Two consecutive iterations of the DFG are shown: +11, +21, +12, +22

● Values seen at adder inputs are: (a1, b1), (c1,d1), (a2, b2), (c2, d2)

● What is the switching activity at the adder inputs determined by?

(src: [Anand98])
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Resource Sharing for Low Power (cont'd)
– Exploiting Signal Correlation –

● Switching activity is determined by

– Intra-iteration effects

Hamming Distance between the values of a1 and c1 (also b1 and 
d1) in the first iteration and a2 and c2 (also b2 and d2) in the second 
iteration

– Inter-iteration effects

Hamming Distance between the values of c1 and a2 (also d1 and 
b2)

● Idea: Exploit correlations between variables in behavioral 
description to minimize switched capacitance at RTL level
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Resource Sharing for Low Power (cont'd)
– Exploiting Signal Correlation –

Scenario 1: Application characterized by slow varying inputs

– inputs are highly temporally self-correlated (e.g. DSP applications)

– internal variables also correlated

– temporal correlations are typically inter-iteration correlations

– architecture with little or no hardware sharing might be better

– hardware sharing could destroy temporal correlations → unnecessary 
switching activity

Scenario 2: Value assumed by an input in an iteration 
correlated with value assumed by other inputs in the same 
iteration

– e.g. correlated sound tracks in high-quality audio applications fed to 
different speakers



ces.itec.kit.edu17Volker Wenzel

Resource Sharing for Low Power (cont'd)
– Exploiting Signal Correlation –

Scenario 3: Functional relationship between signals imposed 
by the correlation leads to correlation

– e.g. variable that represents result of operation might be correlated with 
the variables that represent the input operands of the operation

(src: [Anand98])



ces.itec.kit.edu18Volker Wenzel

Resource Sharing for Low Power (cont'd)
– Exploiting Signal Regularity –

● Regularity: repeated occurrence of computational patterns 
within an algorithm

● Idea: Exploit regularity to reduce interconnect power

– Detect instances of repetitive patterns in the computation and resource 
sharing by

– reusing same interconnect structure for as many instances of computation 
as possible
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Resource Sharing for Low Power (cont'd)
– Exploiting Signal Regularity –

Left: data flow graph + 
implementation

b) Problem: for A2 → M1, A2 → M1, 
A1 → S1 multiplexers are needed

a) same data flow graph, but 
mapping to data path does not 
require multiplexers

Power consumption overhead:

– More fan outs → larger interconects → 
more switched capacitance

– Overhead from multiplexers (and 
probably drivers) leads to more 
switching activity

Conclusion: b) does not preserve 
regularity, a) does

(src: [Mehra])



ces.itec.kit.edu20Volker Wenzel

Resource sharing for LP (cont’d)
- exploiting signal regularity -

Idea: defining E-instances: a pair of 
nodes connected by an edge

     E-template: type of an E-instances 
classified by type of input/output port
Ex: (add->add.right) means a template 
with an adder where output maps to 
right input of another adder

     E-coverage: # of instances of that type 
divided by total # of edges in graph

     task here: using E-templates in 
synthesis as to minimize power with e-
coverage as quality measure through 
regular assignment
Ex 2: a fourth-order cascade filter
Disadvantages?

may require more hardware units 
since sufficient E-templates need to 
be provided -> under circumstances 
power savings come at cost of more 
hardware 

(src: [Mehra])
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Resource sharing for LP (cont’d)
- exploiting signal regularity -

Example: E-template-based scheduling
(src: [Mehra])
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DFG restructuring for Low Power
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DFG restructuring for LP

A typical DSP operation: constant multiplication and 
addition: Y = A * X (e.g. as part of an IIR filter)

Assumptions:
m-bit data value X multiplied by m-bit constant A

Experiment:
Applying random values of X for varying values of A

X and A are represented as two’s complement

A 0.0 … 1.0 normalized

Observing average switching activity per bit at multiplier output

Result: next slide
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DFG restructuring for LP (cont’d)

Observation:
When constant value A is ‘0’ →  
no switching activity (as 
expected)
When A is 1.0, output switching 
activity is equal to switching 
activity of X
In between: it is monotonically 
increasing

(i.e. A)

(src: [Anand98])

 Example
 An adder: two m-bit data 

values X1, X2. It can be 
shown that:
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DFG restructuring for LP (cont’d)

Example: linear time-invariant  
signal processing system (e.g. IIR 
filter) (src: [Anand98])

 Left figure

 Right figure:
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Glitch Power Reduction
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Glitch power reduction
What is “glitch power”?

Power consumption that is related to hazards i.e. temporary values at the 
input/output of gates that cannot be explained when considering a truth table 
only. It is due to different propagation delays in combinatorial paths

 Analysis of the above example unveiled:
A rising transition on signal x1 was frequently accompanied by a falling 

transition on c11. Thus, the rising transition on x1 and the falling 
transition on c11 are highly correlated.

Transitions on signal x1 arrive earlier than transitions on signal c11

due to: a) non-balanced paths, b) wiring delays.

glitch

(src: [Ragh99])

Shown: # transitions / # transition w/o glitches
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Glitch power reduction (cont’d)

In general, glitches are generated at the control signals due to the 
simultaneous presence of the following two conditions. 1) Functional: 
Correlation between rising and falling transitions at two or more signals that 
feed a gate. 2) Temporal: The controlling to non-controlling transition arrives 
earlier at the gate’s input (see example last slide)

Note: glitchy signal propagates (and therefore consumes even more power at 
other gates in the circuitry => try to eliminate the glitch as close to the location 
of first occurrence (i.e. where it is generated) as possible

Glitches may also be generated by data path blocks: examples

Assumption: input 
signals are considered 
to be glitch -free and to 
arrive simultaneously → 
 glitches reported
are generated by the 
respective block

Note: comparator 
‘=’ is glitch-free -> 
seems to indicate 
that the logic inside 
is well-balanced

(Src: [Ragh99])
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Glitch power reduction (cont’d)

Example: multiplexer of 2 8-bit words is controlled by a 
comparator “<“

Assumption: comparator generates glitches; A,B are glitch-free

 Shown: a bit slice of words A and B 

In table: # of 
transitions
w/o glitches, total
# of transitions

 Discussion (notation: <A
i
,B

i
>)

 <0,0>  : glitch cannot propagate
 <0,1>, <1,0>  : glitch propagates at G1 for <1,0> and at G2 for <0,1>
 <1,1>  : glitch always propagates

 How to prevent glitches ?
 For example: use spatial correlations

(src: [Ragh99])

Glitchy and non-
glitchy signals
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Spatial correlation: observation: value of S is irrelevant in case <1,1> (anyway ‘1’ 
at OUT_i) => insert gate G_c => propagation of glitch on S is prohibited
Result:

 Q: why can’t just a buffer be inserted between S and input of G2  (idea here: 
the glitches compensate and therefore eliminate each other) ?

 These and other techniques need to be built into synthesis tools and 
component libraries in order to prevent glitches in the first place

 More techniques to prevent glitches during synthesis can be found in 
[Ragh99]

 Problem with glitch reduction techniques:
 Power overhead of additional gates (might reduce gains obtained through 

reduced number of glitches)
 Increased power of existing gates due to more inputs (example above: 

G_3 has 3 instead of 2 inputs)
 …

(src: [Ragh99])

Glitch power reduction (cont’d)
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Clock Gating
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Clock gating

What is clock gating?

How can clock gating result in power savings?
Reduced capacitive switching in the clock network like

- clock buffers

- interconnect of the clock network

 - latches/registers that are fed by the clock signal
Also:

 - may prevent storage elements from loading unnecessary new values and 
thus saving power

Idea: suppress or disable transitions from propagating
to parts of the clock network under specific conditions
that are determined by the clock gating circuitry

(Src: [Anand98])
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Clock gating (cont’d)

Register re-loads 
previous value when 
comparator output is 
‘0’ => transition at 
the clock input to 
register can be 
suppressed and 
transitions can be 
spared 

 Scheme 1: register 
clock input would be 
forced to ‘0’ when 
comp is ‘0’ (desired)

 Scheme 2: register 
clock input is forced to 
‘1’ when comparator 

output evaluates to ‘0’ 
(desired)

Scheme 1: does not work 
since comp output is not 
stable before clock edge 
rises

Scheme 2: OK (as long as 
gating condition stabilizes 
before clock does ’0’ -> ‘1’)

? (S
rc

: 
[A

na
nd

98
])
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Clock gating (cont’d)

Typically: a) existing signals in the circuitry may be used for gating 
parts of the clock network or, b) signals from previous clock may be 
used (in that case those signal values need to be stored in latches)

Example:
Decode stage of a micro-processor pipeline can be used to clock-gate 
later stages

In other case:
Additional circuitry needs to be added

Pitfalls and overheads:
Introducing additional gates in clock tree may lead to an increase in clock 
delay and clock skew

Ensure that gating clocks does not introduce glitches, otherwise: 
malfunction due to spurious loading of registers

Circuits with gated clock introduce additional complexity to synthesis and 
analysis tools
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Clock gating (cont’d)

Idea: automated gated-clock synthesis (architecture, see above)
Synthesizing an activation function F

a
:

goes to ‘1’ when clock needs to be stopped

Latch L ensures that glitches are not propagated to clock signal

AND gate suppresses eventually clock for whole circuitry

 Consideration: identify 
conditions when next state 
and primary output conditions 
do not change

 Gating the clock on its roots 
(e.g. for whole circuitry)
 → eliminates clock skew 

problem

 Added circuitry may incur 
additional power etc.
 → try to detect subset of 

idle condition at low 
overhead

(src: [Anand98])

?
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Clock gating (cont’d)
- synthesizing F_a -

Given: a Moore FSM
 set of inputs
 set of outputs
 set of states
 initial states
 next-state function
 Output function

Note: for Moore FSM output is a function
only of the current state and not of input
variables.
A self-loop in state transition graph (STG)
corresponds to an idle condition => condition
where clock to FSM register can be suppressed

State s_i with self-loop function

such that

iff x
i
 – decoded state variable corresponding

to s
i
; x

i
 = 1 iff FSM is in state s

i

captures the set of input conditions under which the self-loop
of state s

i
 is traversed

Activation function:

(Src: [Anand98])

Note: activation function
might be complex 
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Often in data paths: output of register is fed back as one of the data 
inputs through, for example, a multiplexer network

Task: find condition under which this is the case by traversing the path 
through the multiplexer network

Clock gating for data paths

The gating condition for the clock input is:

Note: select signals are already present in
network => only invert (if necessary) and
conjunction need to be provided for gating
condition
Caution: strategy does not guarantee timing
requirements (i.e. gating condition should
stabilize before clk goes ‘1’->’0’)
In order to avoid slower clocking: derive
reduced gating condition

(Src: [Anand98])

[0] [1]contr contr�



ces.itec.kit.edu38Volker Wenzel

Clock gating for data paths (cont’d)

Shown: a clock tree that has 
gated clock conditions at various 
points (levels)

Tradeoff:
-  Disabling clock at higher level in the 

tree =>
a larger capacitance (sum of all smaller 
ones) is prevented from switching
- But: clock transition at certain level can 

only be suppressed if all registers of 
the certain sub-tree can retain their old 
values

gating condition is satisfied fewer 
times =>

reduction of # of transitions saved
On the other side: when doing at lower 
level, more transitions could have been 
saved but that costs more logic (that 
itself consumes power …)

clock tree

(Src: [Anand98])CLOCK

CLOCK

IDLE
CONDTION

GATED
CLOCK



ces.itec.kit.edu39Volker Wenzel

Clock gating
- clock tree construction -

Observation: the way the clock tree is constructed has an impact on gating the 
clock tree (see example):

Left: shown a clk tree with four registers 
R1,R2,R3,R4 and the conditions under which 
clk tree can be disabled. x1,…,x4 are decoded 
controller stated variables which are mutually 
exclusive (none of them can assume a 
‘1’simultaneously)
Observation: R1, R2 are grouped under a 
clock tree even though their conjunction can 
never be true => not possible to gate the clock 
at point “A”, for example (similar R3, R4)

Right: gating condition for sub-tree under “A”:

(“B” may be grouped similarly)
Advantage: more suited to gated clock since 
groups of registers with similar or overlapping 
idle conditions closer together
→  trees can be shut down more efficiently  

(Src: [Anand98])

1 ( 1 3) 1AGC x x x x � �
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Clock gating
- multiple clocks -

Observation: some components of a circuit may follow some simple 
regular patterns. In particular, a component may be idle and active in 
alternating clock cycles or so

=> clock gating circuitry needs not necessarily to be data dependent  

 Example:
 A circuit with all registers fed by a single clock; whole capacitance 

is C and frequency is f
 Assume: design is partitioned into two parts each fed by clock 

signals with f/2 and capacitances C1, C2. Power savings can be 
achieved if:

                            so, circuit needs to be partitioned carefully what 
should often be possible to achieve

 Note: - savings here are for clock tree only

               - the f/2 does not result in performance penalties in this

                 example

1 22 2

f f
C C C f � � �

1 2 2C C C  �
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Clock gating
- multiple clocks (cont’d) -

Idea: using multiple non-overlapping clocks. Example:
 Scheduled DFG (left fig.): clock cycles of the schedule s1,…,s5 have been 

assigned to two non-overlapping clock domains, CLOCK1, CLOCK2 in 
alternating way

 Right fig: shows single-clock RTL circuit that implements given DFG using 
minimal resources but does not implement the clock partitioning shown in 
left fig.

(Src: [Anand98])
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Shown: RTL circuit that has been implemented with two clocks
Restrictions:

a) an op scheduled in CLOCK1 cannot share an FU with an op in CLOCK2
b) a variable generated in CLOCK1 cannot share an FU with a variable       

generated in CLOCK2
Why? => 1. ensure that each register can be clocked by either CLOCK1 or CLOCK2
                2. data path can be partitioned into two domains such that there is only         
                  switching activity in their respective active clock cycles

(Src: [Anand98])

Clock gating
- multiple clocks (cont’d) -
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Clock gating
- some disadvantages -

Inserting additional gates into the clock tree can lead to an 
increase in the clock delay and clock skew

Circuit malfunction due to spurious loading of registers 
when not taking into consideration that gating logic might 
introduce glitches

Increase of complexity to synthesis and analysis tools
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