
CES – Chair for Embedded Systems

ces.itec.kit.edu

Low Power Design

Volker Wenzel on behalf of Prof. Dr. Jörg Henkel
Summer Term 2016

ces.itec.kit.edu2Volker Wenzel

Lecture Slides

ces.itec.kit.edu3Volker Wenzel

Overview Low Power Design Lecture

● Introduction and Energy/Power Sources (1)

● Energy/Power Sources(2): Solar Energy Harvesting

● Battery Modeling – Part 1

● Battery Modeling – Part 2

● Hardware power optimization and estimation – Part 1

● Hardware power optimization and estimation – Part 2

● Hardware power optimization and estimation – Part 3

● Low Power Software and Compiler

● Thermal Management – Part 1

● Thermal Management – Part 2

● Aging Mechanisms in integrated circuits

● Lab Meeting

ces.itec.kit.edu4Volker Wenzel

Overview for today

● Recap: Module selection

● Peak Power

● Resource Sharing

● DFG restructuring

● Glitch power reduction

● Clock Gating

ces.itec.kit.edu5Volker Wenzel

Recap: Module Selection for Low Power

ces.itec.kit.edu6Volker Wenzel

Recap: Module Selection for Low Power

● Module Selection

– process of mapping operations from the CDFG to component templates of
RTL library

– optimize power by chosing most suitable component from template
library

● Example: „+“-Operation

– implementation alternatives:

● Ripple-Carry Adder (slow, but more efficient in switched
capacitance)

● Carry-Lookahead Adder (faster, but less efficient in switched
capacitance)

● ...

● Similar tradeoffs exist for other operations

ces.itec.kit.edu7Volker Wenzel

Recap: Module Selection for Low Power (cont'd)

● Every op in CDFG initially mapped to fastest component due to performance constraint

● Not necessary to map all ops to fastest component; better focus on critical path

● Exploit slack in off-critical path ops to select slower functional units that may have a
better efficiency in switched capacitance.

● Important to have a large module library with distinct switching capacity efficiencies and
performance characteristics

● components might operate at different Vdd

(src:[Anand98])

ces.itec.kit.edu8Volker Wenzel

Peak Power

ces.itec.kit.edu9Volker Wenzel

Peak Power

● Example: two possible schedules of a given CDFG

– assumption: same power for each operation

– ASAP schedule results in high peak power

● Slack may be used to reduce peak power without
sacrificing any performance

(src: [Anand98])

ces.itec.kit.edu10Volker Wenzel

Peak Power (cont'd)

t A=2×tADD+2×t MUL

(src:[Knight])

● Assumption: 1,2 and 0,3 may pair-wise share a module.
● Resulting delays t

A
,t

B

● Average power consumption for the two schedules

● Example: t
A
=1,300ns; t

B
=660ns, P

A
=28.6mW, P

B
=56.4mW

Note: average power improved considerably, but energy is approx. the same!

tB=2×tADD+ tMUL

PA=
2×PADD×t ADD+2×PMUL×tMUL

t A
PB=

2×PADD×t ADD+2×PMUL×tMUL
tB

ces.itec.kit.edu11Volker Wenzel

Peak Power (cont'd)

● Window is 60ns

● ‘C’ uses multicycling and no parallelism, has lowest peak power and is slowest

● ‘H’ is fastest, has highest peak power but comparable average power (according to the window)

● Note: optimizing for peak power or for average power are completely distinct tasks.
(src: [Knight])

Min Delay: refers to when the operations are actually
completed, whereas the other case always
assumes a 60ns window.

ces.itec.kit.edu12Volker Wenzel

Resource Sharing

ces.itec.kit.edu13Volker Wenzel

Resource Sharing for Low Power

● Resource Sharing is

– Mapping OPs and variables in CDFG to FUs, registers, etc.

– Defining interconnection between them to form RTL implementation

– Mapping from function to structure

– Directly impacts power consumption by determining switching activity at various signals,
buses, wires, macro blocks, etc.

● Observation:
– Result of resource sharing of variables' values are time multiplexed registers

– Values that appear as input operands of OPs are time-multiplexed to appear at inputs of
FUs

– Values that are transferred between FUs are sequenced to appear on interconnect units
(buses and multiplexers)

– Word-level temporal correlations of values on data path signals are determined by the
correlations among variables and input operands of operations that are grouped together
during resource sharing

– Word-level correlation determine bit-level switching activity

ces.itec.kit.edu14Volker Wenzel

Resource Sharing for Low Power (cont'd)
– Exploiting Signal Correlation –

● Focus on +1 and +2 operations

● Two consecutive iterations of the DFG are shown: +11, +21, +12, +22

● Values seen at adder inputs are: (a1, b1), (c1,d1), (a2, b2), (c2, d2)

● What is the switching activity at the adder inputs determined by?

(src: [Anand98])

ces.itec.kit.edu15Volker Wenzel

Resource Sharing for Low Power (cont'd)
– Exploiting Signal Correlation –

● Switching activity is determined by

– Intra-iteration effects

Hamming Distance between the values of a1 and c1 (also b1 and
d1) in the first iteration and a2 and c2 (also b2 and d2) in the second
iteration

– Inter-iteration effects

Hamming Distance between the values of c1 and a2 (also d1 and
b2)

● Idea: Exploit correlations between variables in behavioral
description to minimize switched capacitance at RTL level

ces.itec.kit.edu16Volker Wenzel

Resource Sharing for Low Power (cont'd)
– Exploiting Signal Correlation –

Scenario 1: Application characterized by slow varying inputs

– inputs are highly temporally self-correlated (e.g. DSP applications)

– internal variables also correlated

– temporal correlations are typically inter-iteration correlations

– architecture with little or no hardware sharing might be better

– hardware sharing could destroy temporal correlations → unnecessary
switching activity

Scenario 2: Value assumed by an input in an iteration
correlated with value assumed by other inputs in the same
iteration

– e.g. correlated sound tracks in high-quality audio applications fed to
different speakers

ces.itec.kit.edu17Volker Wenzel

Resource Sharing for Low Power (cont'd)
– Exploiting Signal Correlation –

Scenario 3: Functional relationship between signals imposed
by the correlation leads to correlation

– e.g. variable that represents result of operation might be correlated with
the variables that represent the input operands of the operation

(src: [Anand98])

ces.itec.kit.edu18Volker Wenzel

Resource Sharing for Low Power (cont'd)
– Exploiting Signal Regularity –

● Regularity: repeated occurrence of computational patterns
within an algorithm

● Idea: Exploit regularity to reduce interconnect power

– Detect instances of repetitive patterns in the computation and resource
sharing by

– reusing same interconnect structure for as many instances of computation
as possible

ces.itec.kit.edu19Volker Wenzel

Resource Sharing for Low Power (cont'd)
– Exploiting Signal Regularity –

Left: data flow graph +
implementation

b) Problem: for A2 → M1, A2 → M1,
A1 → S1 multiplexers are needed

a) same data flow graph, but
mapping to data path does not
require multiplexers

Power consumption overhead:

– More fan outs → larger interconects →
more switched capacitance

– Overhead from multiplexers (and
probably drivers) leads to more
switching activity

Conclusion: b) does not preserve
regularity, a) does

(src: [Mehra])

ces.itec.kit.edu20Volker Wenzel

Resource sharing for LP (cont’d)
- exploiting signal regularity -

Idea: defining E-instances: a pair of
nodes connected by an edge

 E-template: type of an E-instances
classified by type of input/output port
Ex: (add->add.right) means a template
with an adder where output maps to
right input of another adder

 E-coverage: # of instances of that type
divided by total # of edges in graph

 task here: using E-templates in
synthesis as to minimize power with e-
coverage as quality measure through
regular assignment
Ex 2: a fourth-order cascade filter
Disadvantages?

may require more hardware units
since sufficient E-templates need to
be provided -> under circumstances
power savings come at cost of more
hardware

(src: [Mehra])

ces.itec.kit.edu21Volker Wenzel

Resource sharing for LP (cont’d)
- exploiting signal regularity -

Example: E-template-based scheduling
(src: [Mehra])

ces.itec.kit.edu22Volker Wenzel

DFG restructuring for Low Power

ces.itec.kit.edu23Volker Wenzel

DFG restructuring for LP

A typical DSP operation: constant multiplication and
addition: Y = A * X (e.g. as part of an IIR filter)

Assumptions:
m-bit data value X multiplied by m-bit constant A

Experiment:
Applying random values of X for varying values of A

X and A are represented as two’s complement

A 0.0 … 1.0 normalized

Observing average switching activity per bit at multiplier output

Result: next slide

ces.itec.kit.edu24Volker Wenzel

DFG restructuring for LP (cont’d)

Observation:
When constant value A is ‘0’ →
no switching activity (as
expected)
When A is 1.0, output switching
activity is equal to switching
activity of X
In between: it is monotonically
increasing

(i.e. A)

(src: [Anand98])

 Example
 An adder: two m-bit data

values X1, X2. It can be
shown that:

ces.itec.kit.edu25Volker Wenzel

DFG restructuring for LP (cont’d)

Example: linear time-invariant
signal processing system (e.g. IIR
filter) (src: [Anand98])

 Left figure

 Right figure:

ces.itec.kit.edu26Volker Wenzel

Glitch Power Reduction

ces.itec.kit.edu27Volker Wenzel

Glitch power reduction
What is “glitch power”?

Power consumption that is related to hazards i.e. temporary values at the
input/output of gates that cannot be explained when considering a truth table
only. It is due to different propagation delays in combinatorial paths

 Analysis of the above example unveiled:
A rising transition on signal x1 was frequently accompanied by a falling

transition on c11. Thus, the rising transition on x1 and the falling
transition on c11 are highly correlated.

Transitions on signal x1 arrive earlier than transitions on signal c11

due to: a) non-balanced paths, b) wiring delays.

glitch

(src: [Ragh99])

Shown: # transitions / # transition w/o glitches

ces.itec.kit.edu28Volker Wenzel

Glitch power reduction (cont’d)

In general, glitches are generated at the control signals due to the
simultaneous presence of the following two conditions. 1) Functional:
Correlation between rising and falling transitions at two or more signals that
feed a gate. 2) Temporal: The controlling to non-controlling transition arrives
earlier at the gate’s input (see example last slide)

Note: glitchy signal propagates (and therefore consumes even more power at
other gates in the circuitry => try to eliminate the glitch as close to the location
of first occurrence (i.e. where it is generated) as possible

Glitches may also be generated by data path blocks: examples

Assumption: input
signals are considered
to be glitch -free and to
arrive simultaneously →
 glitches reported
are generated by the
respective block

Note: comparator
‘=’ is glitch-free ->
seems to indicate
that the logic inside
is well-balanced

(Src: [Ragh99])

ces.itec.kit.edu29Volker Wenzel

Glitch power reduction (cont’d)

Example: multiplexer of 2 8-bit words is controlled by a
comparator “<“

Assumption: comparator generates glitches; A,B are glitch-free

 Shown: a bit slice of words A and B

In table: # of
transitions
w/o glitches, total
of transitions

 Discussion (notation: <A
i
,B

i
>)

 <0,0> : glitch cannot propagate
 <0,1>, <1,0> : glitch propagates at G1 for <1,0> and at G2 for <0,1>
 <1,1> : glitch always propagates

 How to prevent glitches ?
 For example: use spatial correlations

(src: [Ragh99])

Glitchy and non-
glitchy signals

ces.itec.kit.edu30Volker Wenzel

Spatial correlation: observation: value of S is irrelevant in case <1,1> (anyway ‘1’
at OUT_i) => insert gate G_c => propagation of glitch on S is prohibited
Result:

 Q: why can’t just a buffer be inserted between S and input of G2 (idea here:
the glitches compensate and therefore eliminate each other) ?

 These and other techniques need to be built into synthesis tools and
component libraries in order to prevent glitches in the first place

 More techniques to prevent glitches during synthesis can be found in
[Ragh99]

 Problem with glitch reduction techniques:
 Power overhead of additional gates (might reduce gains obtained through

reduced number of glitches)
 Increased power of existing gates due to more inputs (example above:

G_3 has 3 instead of 2 inputs)
 …

(src: [Ragh99])

Glitch power reduction (cont’d)

ces.itec.kit.edu31Volker Wenzel

Clock Gating

ces.itec.kit.edu32Volker Wenzel

Clock gating

What is clock gating?

How can clock gating result in power savings?
Reduced capacitive switching in the clock network like

- clock buffers

- interconnect of the clock network

 - latches/registers that are fed by the clock signal
Also:

 - may prevent storage elements from loading unnecessary new values and
thus saving power

Idea: suppress or disable transitions from propagating
to parts of the clock network under specific conditions
that are determined by the clock gating circuitry

(Src: [Anand98])

ces.itec.kit.edu33Volker Wenzel

Clock gating (cont’d)

Register re-loads
previous value when
comparator output is
‘0’ => transition at
the clock input to
register can be
suppressed and
transitions can be
spared

 Scheme 1: register
clock input would be
forced to ‘0’ when
comp is ‘0’ (desired)

 Scheme 2: register
clock input is forced to
‘1’ when comparator

output evaluates to ‘0’
(desired)

Scheme 1: does not work
since comp output is not
stable before clock edge
rises

Scheme 2: OK (as long as
gating condition stabilizes
before clock does ’0’ -> ‘1’)

? (S
rc

:
[A

na
nd

98
])

ces.itec.kit.edu34Volker Wenzel

Clock gating (cont’d)

Typically: a) existing signals in the circuitry may be used for gating
parts of the clock network or, b) signals from previous clock may be
used (in that case those signal values need to be stored in latches)

Example:
Decode stage of a micro-processor pipeline can be used to clock-gate
later stages

In other case:
Additional circuitry needs to be added

Pitfalls and overheads:
Introducing additional gates in clock tree may lead to an increase in clock
delay and clock skew

Ensure that gating clocks does not introduce glitches, otherwise:
malfunction due to spurious loading of registers

Circuits with gated clock introduce additional complexity to synthesis and
analysis tools

ces.itec.kit.edu35Volker Wenzel

Clock gating (cont’d)

Idea: automated gated-clock synthesis (architecture, see above)
Synthesizing an activation function F

a
:

goes to ‘1’ when clock needs to be stopped

Latch L ensures that glitches are not propagated to clock signal

AND gate suppresses eventually clock for whole circuitry

 Consideration: identify
conditions when next state
and primary output conditions
do not change

 Gating the clock on its roots
(e.g. for whole circuitry)
 → eliminates clock skew

problem

 Added circuitry may incur
additional power etc.
 → try to detect subset of

idle condition at low
overhead

(src: [Anand98])

?

ces.itec.kit.edu36Volker Wenzel

Clock gating (cont’d)
- synthesizing F_a -

Given: a Moore FSM
 set of inputs
 set of outputs
 set of states
 initial states
 next-state function
 Output function

Note: for Moore FSM output is a function
only of the current state and not of input
variables.
A self-loop in state transition graph (STG)
corresponds to an idle condition => condition
where clock to FSM register can be suppressed

State s_i with self-loop function

such that

iff x
i
 – decoded state variable corresponding

to s
i
; x

i
 = 1 iff FSM is in state s

i

captures the set of input conditions under which the self-loop
of state s

i
 is traversed

Activation function:

(Src: [Anand98])

Note: activation function
might be complex

ces.itec.kit.edu37Volker Wenzel

Often in data paths: output of register is fed back as one of the data
inputs through, for example, a multiplexer network

Task: find condition under which this is the case by traversing the path
through the multiplexer network

Clock gating for data paths

The gating condition for the clock input is:

Note: select signals are already present in
network => only invert (if necessary) and
conjunction need to be provided for gating
condition
Caution: strategy does not guarantee timing
requirements (i.e. gating condition should
stabilize before clk goes ‘1’->’0’)
In order to avoid slower clocking: derive
reduced gating condition

(Src: [Anand98])

[0] [1]contr contr�

ces.itec.kit.edu38Volker Wenzel

Clock gating for data paths (cont’d)

Shown: a clock tree that has
gated clock conditions at various
points (levels)

Tradeoff:
- Disabling clock at higher level in the

tree =>
a larger capacitance (sum of all smaller
ones) is prevented from switching
- But: clock transition at certain level can

only be suppressed if all registers of
the certain sub-tree can retain their old
values

gating condition is satisfied fewer
times =>

reduction of # of transitions saved
On the other side: when doing at lower
level, more transitions could have been
saved but that costs more logic (that
itself consumes power …)

clock tree

(Src: [Anand98])CLOCK

CLOCK

IDLE
CONDTION

GATED
CLOCK

ces.itec.kit.edu39Volker Wenzel

Clock gating
- clock tree construction -

Observation: the way the clock tree is constructed has an impact on gating the
clock tree (see example):

Left: shown a clk tree with four registers
R1,R2,R3,R4 and the conditions under which
clk tree can be disabled. x1,…,x4 are decoded
controller stated variables which are mutually
exclusive (none of them can assume a
‘1’simultaneously)
Observation: R1, R2 are grouped under a
clock tree even though their conjunction can
never be true => not possible to gate the clock
at point “A”, for example (similar R3, R4)

Right: gating condition for sub-tree under “A”:

(“B” may be grouped similarly)
Advantage: more suited to gated clock since
groups of registers with similar or overlapping
idle conditions closer together
→ trees can be shut down more efficiently

(Src: [Anand98])

1 (1 3) 1AGC x x x x � �

ces.itec.kit.edu40Volker Wenzel

Clock gating
- multiple clocks -

Observation: some components of a circuit may follow some simple
regular patterns. In particular, a component may be idle and active in
alternating clock cycles or so

=> clock gating circuitry needs not necessarily to be data dependent

 Example:
 A circuit with all registers fed by a single clock; whole capacitance

is C and frequency is f
 Assume: design is partitioned into two parts each fed by clock

signals with f/2 and capacitances C1, C2. Power savings can be
achieved if:

 so, circuit needs to be partitioned carefully what
should often be possible to achieve

 Note: - savings here are for clock tree only

 - the f/2 does not result in performance penalties in this

 example

1 22 2

f f
C C C f � � �

1 2 2C C C �

ces.itec.kit.edu41Volker Wenzel

Clock gating
- multiple clocks (cont’d) -

Idea: using multiple non-overlapping clocks. Example:
 Scheduled DFG (left fig.): clock cycles of the schedule s1,…,s5 have been

assigned to two non-overlapping clock domains, CLOCK1, CLOCK2 in
alternating way

 Right fig: shows single-clock RTL circuit that implements given DFG using
minimal resources but does not implement the clock partitioning shown in
left fig.

(Src: [Anand98])

ces.itec.kit.edu42Volker Wenzel

Shown: RTL circuit that has been implemented with two clocks
Restrictions:

a) an op scheduled in CLOCK1 cannot share an FU with an op in CLOCK2
b) a variable generated in CLOCK1 cannot share an FU with a variable

generated in CLOCK2
Why? => 1. ensure that each register can be clocked by either CLOCK1 or CLOCK2
 2. data path can be partitioned into two domains such that there is only
 switching activity in their respective active clock cycles

(Src: [Anand98])

Clock gating
- multiple clocks (cont’d) -

ces.itec.kit.edu43Volker Wenzel

Clock gating
- some disadvantages -

Inserting additional gates into the clock tree can lead to an
increase in the clock delay and clock skew

Circuit malfunction due to spurious loading of registers
when not taking into consideration that gating logic might
introduce glitches

Increase of complexity to synthesis and analysis tools

ces.itec.kit.edu45Volker Wenzel

Sources

[Heer04] Ch. Herr, U. Schlichtmann, “Ultra-Low-Power Design: Device and logic design approaches”, pp. 1-20, in “Ultra Low-Power
Electronics and Design” by Kluwer, 2004.

[Anand98] A. Raghunathan, N.K. Jha, S. Dey, “High-level power analysis and optimization”, Kluwer Academic Publishers,1998.

[Sarraf95] S. Raje, M. Sarrafzadeh, “Variable voltage scheduling”, IEEE/ACM ISLPED 1995. pp. 9-14, 1995.

[Knight] R.S. Martin, J.P. Knight, “Power-Profiler: Optimizing ASIC’s Power Consumption at the behavioral level”, Proc. Of IEEE/ACM
Design Automation Conf. (DAC’95), pp.42-47,1995.

[Macii04] E. Macii (Ed.), “Ultra Low-Power Electronics and Design”, Kluwer Academic Publishers, 2004.

[Devadas] Alidina, M.; Monteiro, J.; Devadas, S.; Ghosh, A.; Papefthymiou, M.; “Precomputation-based Sequential Logic
Optimization For Low Power”, Computer-Aided Design (ICCAD), 1994., IEEE/ACM International Conference on November 6-10,
1994 Page(s):74 – 81.

[Ragh99] Raghunathan, A.; Dey, S.; Jha, N.K.; “Register transfer level power optimization with emphasis on glitch analysis and
reduction”, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on Volume 18, Issue 8, Page(s):1114 –
1131, Aug. 1999.

[Tivari] Tiwari, V.; Malik, S.; Ashar, P.; “Guarded evaluation: pushing power management to logic synthesis/design”, Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on Volume 17, Issue 10, Page(s):1051 – 1060, Oct. 1998.

[Mehra] R. Mehra, J. Rabaey, “Exploiting Regularity for Low Power Design”, IEEE/ACM Intl’ Conference on Computer Aided Design
(ICCAD96), pp. 166-172, 1996.

[Keating] Keating, Michael, David Flynn, Rob Aitken, Alan Gibbons, and Kaijian Shi. Low power methodology manual: for system-on-
chip design. Springer Publishing Company, Incorporated, 2007.

[Kim] Kim, N.S.; Austin, T.; Baauw, D.; Mudge, T.; Flautner, K.; Hu, J.S.; Irwin, M.J.; Kandemir, M.; Narayanan, V., "Leakage current:
Moore's law meets static power," Computer , vol.36, no.12, pp.68,75, Dec. 2003

	Slide 1
	Slide 2
	Slide 3
	Outline
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	DFG restructuring for LP
	DFG restructuring for LP (cont’d)
	Slide 25
	Slide 26
	Glitch power reduction
	Glitch power reduction (cont’d)
	Slide 29
	Slide 30
	Slide 31
	Clock gating
	Clock gating (cont’d)
	Slide 34
	Slide 35
	Clock gating (cont’d) - synthesizing F_a -
	Clock gating for data paths
	Clock gating for data paths (cont’d)
	Clock gating - clock tree construction -
	Clock gating - multiple clocks -
	Clock gating - multiple clocks (cont’d) -
	Slide 42
	Clock gating - some disadvantages -
	Slide 45

